A defect in glycogen synthesis characterizes insulin resistance in hypertensive patients with type 2 diabetes.
نویسندگان
چکیده
A subgroup of patients with type 2 diabetes shows a clustering of abnormalities such as peripheral insulin resistance, hypertension, and microalbuminuria. To evaluate whether these traits reflect intrinsic disorders of cell function rather than in vivo environmental effects, we studied a group of 7 nondiabetic hypertensive subjects with an altered albumin excretion rate (AER) (HyMA+) and 3 groups of patients with type 2 diabetes: 7 with normal blood pressure and normal AER (DH-MA-), 7 with high blood pressure and normal AER (DH+MA-), and 7 with both high blood pressure and altered AER (DH+MA+). Glucose disposal was measured during an hyperinsulinemic clamp (40 mU. m(2)(-1). min(-1)) with primed deuterated [6.6 (2)H(2)] glucose infusion. In the same subjects, a skin biopsy was performed and the following parameters were investigated: glucose transport (as determined by [(3)H]2-deoxyglucose uptake); glycogen synthase activity (as determined by [(14)C] glucose incorporation from UDP-[U-(14)C] glucose into glycogen); glycogen phosphorylase activity (as measured by the incorporation of [U-(14)C]glucose 1-phosphate into glycogen); and total glycogen content. In vivo glucose disposal was significantly reduced in DH+MA- and DH+MA+, with respect to DH-MA-, HyMA+, and controls. Insulin-stimulated glucose transport was similar in the 3 groups of patients with diabetes. A significant reduction of intracellular glycogen content was observed in DH+MA- and DH+MA+ compared with DH-MA- in both basal and insulin-stimulated conditions, probably because of a major impairment of glycogen synthase activity. Glycogen phosphorylase activity did not show differences between the groups. These results suggest that (1) the combination of type 2 diabetes with hypertension and altered AER is associated with impaired insulin sensitivity, and (2) intrinsic, possibly genetic, factors may account for increased peripheral insulin resistance in hypertensive microalbuminuric patients with type 2 diabetes, pointing to the reduction of glycogen synthase activity as a shared common defect.
منابع مشابه
A Defect in Glycogen Synthesis Characterizes Insulin Resistance in Hypertensive Patients
A subgroup of patients with type 2 diabetes shows a clustering of abnormalities such as peripheral insulin resistance, hypertension, and microalbuminuria. To evaluate whether these traits reflect intrinsic disorders of cell function rather than in vivo environmental effects, we studied a group of 7 nondiabetic hypertensive subjects with an altered albumin excretion rate (AER) (HyMA1) and 3 grou...
متن کاملThe diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity.
The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase (GS) activity; the content of glucose-6-phosphate, glucose, and glycogen; and the glucose transport ...
متن کاملThe Effect of Treating Vitamin D Deficiency or Insufficiency on Serum Adiponectin, Leptin and Insulin Resistance of Type 2 Diabetes Mellitus Patients: A Pilot Study
Vitamin D deficiency is considered as one of the most prevalent healthcare problems in the world. Vitamin D contributes to insulin synthesis and secretion. Deficiency of vitamin D leads to insulin resistance which is the major cause of type 2 diabetes mellitus. We aim to evaluate the effect of treating vitamin D deficiency or insufficiency on serum adiponectin, leptin, and leptin to adiponectin...
متن کاملThe Effect of Treating Vitamin D Deficiency or Insufficiency on Serum Adiponectin, Leptin and Insulin Resistance of Type 2 Diabetes Mellitus Patients: A Pilot Study
Vitamin D deficiency is considered as one of the most prevalent healthcare problems in the world. Vitamin D contributes to insulin synthesis and secretion. Deficiency of vitamin D leads to insulin resistance which is the major cause of type 2 diabetes mellitus. We aim to evaluate the effect of treating vitamin D deficiency or insufficiency on serum adiponectin, leptin, and leptin to adiponectin...
متن کاملThe Effect of Resistance Exercise on Blood Glucose, Insulin and Insulin resistance in Iranian Patients with Type II Diabetes: A Systematic Review and Meta-Analysis
Objective: Resistance exercise is recommended as effective treatments for people with type 2 diabetes. However, the impact of this mode of exercise on blood glucose, insulin and insulin resistance in Iranian's type 2 diabetic patients is unclear. We conducted a systematic review of the literature for the effect of resistance exercise training on these clinical markers in Iranian's type 2 diabet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 37 6 شماره
صفحات -
تاریخ انتشار 2001